Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The Antarctic ice sheet blankets >99% of the continent and limits our ability to study how subglacial geology and topography have evolved through time. Ice-rafted dropstones derived from the Antarctic subglacial continental interior at different times during the late Cenozoic provide valuable thermal history proxies to understand this geologic history. We applied multiple thermochronometers covering a range of closure temperatures (60–800 °C) to 10 dropstones collected during Integrated Ocean Drilling Program (IODP) Expedition 318 in order to explore the subglacial geology and thermal and exhumation history of the Wilkes Subglacial Basin. The Wilkes Subglacial Basin is a key target for study because ice-sheet models show it was an area of ice-sheet retreat that significantly contributed to sea-level rise during past warm periods. Depositional ages of dropstones range from early Oligocene to late Pleistocene and have zircon U-Pb or 40Ar/39Ar ages indicating sources from the Mertz shear zone, Adélie craton, Ferrar large igneous province, and Millen schist belt. Dropstones from the Mertz shear zone and Adélie craton experienced three cooling periods (1700–1500 Ma; 500–280 Ma; 34–0 Ma) and two periods of extremely slow cooling rates (1500–500 Ma; 280–34 Ma). Low-temperature thermochronometers from seven of the dropstones record cooling during the Paleozoic, potentially recording the Ross or Pan-African orogenies, and during the Mesozoic, potentially recording late Paleozoic to Mesozoic rifting. These dropstones then resided within ~500 m of the surface since the late Paleozoic and early Mesozoic. In contrast, two dropstones deposited during the mid-Pliocene, one from the Mertz shear zone and one from Adélie craton, show evidence for localized post-Eocene glacial erosion of ≥2 km.more » « less
- 
            A sequential chemical extraction procedure was developed and tested to investigate the utility of meteoric 10Be as a tracer for authigenic mineral formation beneath the East Antarctic Ice Sheet. Subglacial meltwater is widely available under the Antarctic Ice Sheet and dissolved gases within it have the potential to drive chemical weathering processes in the subglacial environment. Meteoric 10Be is a cosmogenic nuclide with a half-life of 1.39⋅10^6 years that is incorporated into glacier ice, therefore its abundance in the subglacial environment in Antarctica is meltwater dependent. It is known to adsorb to fine-grained particles in aqueous solution, precipitate with amorphous oxides/hydroxides, and/or be incorporated into authigenic clay minerals during chemical weathering. The presence of 10Be in chemical weathering products derived from beneath the ice therefore indicates chemical weathering processes in the subglacial environment. Freshly emerging subglacial sediments from the Mt. Achernar blue ice moraine were subject to chemical extractions where these weathering phases were isolated and 10Be concentrations therein quantified. Optimization of the phase isolation was developed by examining the effects of each extraction on the sample mineralogy and chemical composition. Experiments on 10Be desorption revealed that pH 3.2–3.5 was optimal for the extraction of adsorbed 10Be. Vigorous disaggregation of the samples before grain size separations and acid extractions is crucial due to the incorporation of the nuclide in clay minerals and its preferential absorption to clay-sized particles. 10Be concentrations of 2–22⋅10^7 atoms⋅g^ -1 measured in oxides and clay minerals in freshly emerging sediments strongly indicate subglacial chemical weathering in the catchment of the Mt. Achernar moraine. Based on total 10Be sample concentrations, local basal melt rates, and 10Be ice concentrations, sediment-meltwater contact in the subglacial environment is on the order of thousands of years per gram of underlying fine sediment. Strong correlation (R = 0.97) between 10Be and smectite abundance in the sediments supports authigenic clay formation in the subglacial environment. This suggests meteoric 10Be is a useful tool to characterize subglacial geochemical weathering processes under the Antarctic Ice Sheet.more » « less
- 
            We propose that a “local first” approach should be applied to the interpretation of provenance indicators in glacigenic sediments of all depositional ages, especially where the glacier flow path is poorly constrained and the records of potential source lithologies are incomplete. Provenance proxies, specifically U-Pb detrital zircon geochronology, of glacigenic sediments are commonly used to infer the size and distribution of past ice centers, which are in turn used to inform ancient climate reconstructions. Interpretations of these proxies often assume that similar provenance signals between glacigenic units of the same depositional age are evidence that they were deposited by the same glacier, even when those units are, not infrequently, separated by thousands of kilometers. Though glaciers are capable of transporting sediment great distances, this assumption is problematic as it does not acknowledge observations from the geologic records of Pleistocene ice sheets that show provenance proxies in glacial sediments are most likely to reflect proximal (within 100 km) sediment sources located along a specific flow path. In a “local first” approach, provenance indicators are first compared to local source lithologies. If the indicator cannot be attributed to proximal sources, only then should progressively more distal sources be investigated. Applying a local first approach to sediment provenance in ancient glacial systems may result in significant revisions to paleo ice sheet reconstructions. The effectiveness of the local first approach is demonstrated here by comparing new U-Pb detrital zircon dates from the Permo-Carboniferous glacigenic Wynyard Fm with progressively distal source lithologies along the glacier’s inferred flow path. The Wynyard Fm and source lithologies were compared using an inverse Monte-Carlo unmixing model (DZMix). All measured Wynyard Fm detrital zircon dates can be attributed to zircon sources within 33 km of the sample location along the glacier’s flow path. This interpretation of a proximal detrital zircon provenance does not conflict with the popular interpretation made from sedimentological observations that the Wynyard Fm was deposited by a large, temperate outlet glacier or ice stream that flowed south-to-north across western Tasmania. Overall, a local first approach to glacial sediment provenance, though more challenging than direct comparisons between glacigenic sedimentary deposits, has the potential to elucidate the complex histories and flow paths of glacial sedimentary systems of all depositional ages.more » « less
- 
            null (Ed.)Abstract Mount Achernar moraine is a terrestrial sediment archive that preserves a record of ice-sheet dynamics and climate over multiple glacial cycles. Similar records exist in other blue ice moraines elsewhere on the continent, but an understanding of how these moraines form is limited. We propose a model to explain the formation of extensive, coherent blue ice moraine sequences based on the integration of ground-penetrating radar (GPR) data with ice velocity and surface exposure ages. GPR transects (100 and 25 MHz) both perpendicular and parallel to moraine ridges at Mount Achernar reveal an internal structure defined by alternating relatively clean ice and steeply dipping debris bands extending to depth, and where visible, to the underlying bedrock surface. Sediment is carried to the surface from depth along these debris bands, and sublimates out of the ice, accumulating over time (>300 ka). The internal pattern of dipping reflectors, combined with increasing surface exposure ages, suggest sequential exposure of the sediment where ice and debris accretes laterally to form the moraine. Subsurface structure varies across the moraine and can be linked to changes in basal entrainment conditions. We speculate that higher concentrations of debris may have been entrained in the ice during colder glacial periods or entrained more proximal to the moraine sequence.more » « less
- 
            ABSTRACT Stable isotopes of water (δ 18 O and δ 2 H) were measured in the debris-laden ice underlying an Antarctic blue ice moraine, and in adjoining Law Glacier in the central Transantarctic Mountains. Air bubble content and morphology were assessed in shallow ice core samples. Stable isotope measurements plot either on the meteoric waterline or are enriched from it. The data cluster in two groups: the ice underlying the moraine has a δ 2 H:δ 18 O slope of 5.35 ± 0.92; ice from adjoining portions of Law Glacier has a slope of 6.69 ± 1.39. This enrichment pattern suggests the moraine's underlying blue ice entrained sediment through refreezing processes acting in an open system. Glaciological conditions favorable to warm-based sediment entrainment occur 30–50 km upstream. Basal melting and refreezing are further evidenced by abundant vapor figures formed from internal melting of the ice crystals. Both the moraine ice and Law Glacier are sufficiently depleted of heavy isotopes that their ice cannot be sourced locally, but instead must be derived from far-field interior regions of the higher polar plateau. Modeled ice flow speeds suggest the ice must be at least 80 ka old, with Law Glacier's ice possibly dating to OIS 5 and moraine ice older still.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
